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Artificial neural networks have recently achieved many successes in solving sequential

processing and planning tasks. Their success is often ascribed to the emergence of the task’s

low-dimensional latent structure in the network activity – i.e., in the learned neural repre-

sentations. Here, we investigate the hypothesis that a means for generating representations

with easily accessed low-dimensional latent structure, possibly reflecting an underlying

semantic organization, is through learning to predict observations about the world. Specifi-

cally, we ask whether and when network mechanisms for sensory prediction coincide with

those for extracting the underlying latent variables. Using a recurrent neural network model

trained to predict a sequence of observations we show that network dynamics exhibit low-

dimensional but nonlinearly transformed representations of sensory inputs that map the

latent structure of the sensory environment. We quantify these results using nonlinear

measures of intrinsic dimensionality and linear decodability of latent variables, and provide

mathematical arguments for why such useful predictive representations emerge. We focus

throughout on how our results can aid the analysis and interpretation of experimental data.
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Neural network representations are often described as
encoding latent information from a corpus of data1–7.
Similarly, the brain forms representations to help it

overcome a formidable challenge: to organize episodes, tasks, and
behavior according to a priori unkown latent variables underlying
the experienced sensory information. In this paper, motivated by
the literature suggesting that these efficient representations are
instrumental for the brain’s ability to solve a variety of tasks8–10,
we ask: How does such an organization of information emerge?

In the context of artificial neural networks, two related bodies
of work have shown that this can occur due to the process of
prediction—giving rise to predictive representations. First,
neural networks are able to extract latent semantic character-
istics from linguistic corpora when trained to predict the con-
text in which a given word appears11–14. The resulting neural
representations of words (known as word embeddings) have
emergent geometric properties that reflect the semantic mean-
ing of the words they represent15. Second, models learning to
encode for future sensory information give rise to internal
representations that encode task-related maps useful for goal-
directed behavior9,16–18.

As predictive mechanisms have been conjectured to be
implemented across distinct neural circuits19–21, characterizing
predictive representations can then shed light on where and how
the brain exploits such mechanisms to organize sensory infor-
mation. Our goal is to build theoretical and data-analytic tools
that explain why a predictive learning process leads to low-
dimensional maps of the latent structure of the underlying tasks
—and what the general features of such maps in neural record-
ings might be. This links predictive learning in neural networks
with existing mechanisms of extracting latent structure22–24 and
low-dimensional representations from data25.

We begin with an introductory example of how predictive
learning enables the extraction of latent variables characterizing
the regularity of transitions among a set of discrete “states”, each
of which generates a different observation about the world. Then
we focus on a model where observations are generated from
continuous latent variables embedded in a low-dimensional
manifold. We focus on the special case of spatial exploration, in
which the latent variables are the position and orientation of an
agent in the spatial environment, and the observations are high-
dimensional sensory inputs specific to a given position and
orientation. The predictive learning task we study is to predict
future observations. Our central question is whether a recurrent
neural network (RNN) trained on this predictive learning task
will extract representations of the underlying low-dimensional
latent variables.

We develop analytical tools to reveal the low-dimensional
structure of representations created by predictive learning.
Crucial to this is the distinction between linear26–30 and non-
linear dimensionality31,32, which allows us to uncover what we
call latent space signal transfer, wherein latent variables become
increasingly linearly decodable from the top principal compo-
nents of the neural representation as learning progresses. Latent
space signal transfer is accompanied by clear trends in the
linear and nonlinear dimensionality of the underlying repre-
sentation manifold, and potentially gives rise to the the for-
mation of neurons with localized activations on the nonlinear
manifold, manifold cells33. Importantly, while each of these
phenomena could separately find its origin in a mechanism
different from predictive learning, they altogether provide a
strong measurable feature of predictive learning that expect
further testing in both neural and machine-learning experi-
ments. We conclude by extending our framework to the ana-
lysis of both neural data and a second task—arm-reaching
movements.

Results
Predictive learning and latent representations: a simple
example. In predictive learning a neural network learns to
minimize the errors between its output at the present time and a
stream of future observations. This is a predictive framework in
the temporal domain, where the prediction is along the time
axis20. At each time t an agent observes the state of a system ot
and takes an action at out of a set of possible actions. The agent is
prompted to learn that, given (ot, at), it will next observe ot+1.

We begin by illustrating our core idea— that predictive
learning leads neural networks to represent the latent spaces
underlying their inputs—in a simple setting. We study the task
shown in Fig. 1a, where the state of the system is in one of Ns=
25 states. To each state is associated a unique set of five random
cards that the agent observes whenever it is in that state. The
states are organized on a two-dimensional lattice—the latent
space. Observations have no dependence on the lattice structure,
as they are randomly assigned to each state with statistics that are
completely independent from one state to the next. On the other
hand, actions are defined on the lattice: at each time t the agent
either randomly moves to one out of the four neighboring states
by selecting the corresponding action or remains in the same
state. Movements, when they occur are thus along the four
cardinal directions N, S, W, E used to indicate the corresponding
action. Meanwhile, 0 denotes the action corresponding to no
movement, for a total of Na= 5 possible actions.

The agent solves this predictive task when, prompted with a
pair (ot, at), it correctly predicts the upcoming observation ot+1. A
priori, this task does not require the agent to extract information
about the underlying lattice structure of the state space. Indeed
the agent could solve the task with at least two possible strategies:
(1) by associating with each observation (set of cards) the next
observation via a collection of Ns ×Na distinct relationships (ot,
at)↦ ot+1 (combinatorial solution), or (2) via a simple set of
relationships that exploit the underlying lattice structure of the
state space. In this second scenario the agent would uncover the
lattice structure while using it to map actions to predictions. This
solution thus presupposes an internal representation of the latent
space and we refer to it as predictive representation solution. The
critical difference between the combinatorial and predictive
representation solutions is that the latter extracts a representation
of the latent space while the former doesnot, cfr. Fig. 1b.

We train a simple two-layer network on this card-game task: to
predict the future observation given inputs of the current
observation and action, Fig. 1c. We focus on the first layer that
receives the joint input of actions and observations. In this
example observations are encoded with a one-hot representation,
formally turning the problem into a classification task. Upon
learning, by means of Stochastic Gradient Descent (SGD), the
network develops an internal representation in the hidden layer
for each of the 125 input pairs (ot, at).

Visualizing these internal representations in the space of
principal components of neural activations, the underlying latent
structure of the state space appears (Fig. 1d.) This lattice-like
structure is a joint representation of observations and actions.
This representation emerges over the course of learning: initially,
the representation of each observation-action pair (ot, at) does not
reflect the underlying latent space, see Fig. 1d. The development
of the latent space representation can be clearly visualized across
stages of the learning process (see Fig. S1).

Additionally, if we remove the actions from the input to the
network but still training it to perform prediction, the network
still learns a representation that partially reflects the latent space,
Fig. 1e, though this time it is distorted (cf. Fig. S2).

Below, we will demonstrate this phenomenon in other more
complex settings, but we first pause to build intuition for why it
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occurs within neural networks. We start by noticing that upon
learning the five actions a ∈ {N, S, W, E, θ} are mapped to a fixed
vector wa, which is added to the state representation ws every time
the corresponding action is selected:

xs;a ¼ tanhðws þ wa þ bÞ ; ð1Þ
where b is a learned bias parameter. Specifically, consider the
representation x in the network for predicting a state s0 located
immediately above (to the N) of the state s, in two scenarios. In
the first, s0 is arrived at from s, after the action a=N. This gives
the representation

xs;N ¼ tanhðws þ wN þ bÞ ð2Þ
In the second, s0 is arrived at from s0, after the null action:

xs0;0 ¼ tanhðw0 þ w0 þ bÞ ð3Þ
Both of these activations must be read out to return the same
prediction: s0. While this could occur in principle if the readout
operation learned to collapse different representations to the same
readout, the network learns a simpler solution in which the
representations (Eq. (2)) and (Eq. (3)) are equal (cf.34,35), so that
xs0;0 ¼ xs;N implies:

ws0 � ws ¼ wN � w0 ð4Þ
for any pair of states s; s0 linked by the action a=N. This implies
that (up to the hyperbolic tangent non-linearity), the representa-
tion of the states is acted upon by the action in a translational
invariant way in the direction of the action wN−w0. This is true
for any of the actions N, S, W, E, and for any starting state s.
Thus, the representation inherits an approximate translation
invariance—the characteristic property of a lattice structure. This
invariance confers a geometrical structure upon the learned
neural representation that reflects the latent space. This
phenomenon directly generalizes to lattices of higher dimension,
as shown in Fig. 1f.

We note that this analysis holds precisely when the learning
process enforces representations of the same decoded state to be
nearly identical—which occurs in all of our simulations and is

predicted by other numerical and theoretical studies34,35—and
holds approximately when it tends to cluster these together. By
contrast, in a general combinatorial solution of Eq. (4) each
observation action pair could be linked to the upcoming state
independently, xs;N≠xs0;0.

We can apply related ideas to begin to understand more
challenging case in which the prediction task is performed
without knowledge of the action, so that only observations are
passed as input to the network. As we showed in figure (Fig. 1e)
above, in this case the internal representation still partially reflects
the latent space. This is not because the set of observations as a
whole carries any information about the latent space, but because
the effect of the actions—to bind nearby states together—is
reflected in the statistics of the sequence of observations. Thus,
through making predictions about future observations, the
network still learns to bind states that occur nearby in time
together, extracting the latent space (cf. Suppl. Mat. Sec. 2.4).

We next generalize the predictive learning framework to two
different, more complex benchmark tasks of neuroscientific
interest: spatial exploration and arm-reaching movements.

Predictive learning extracts latent space representations in a
spatial exploration task. We focus on predictive learning in a
spatial exploration task in order to generalize the previous
example to show how predictive learning extracts the low-
dimensional latent structure from a high-dimensional sensory
stream (Fig. 2a) and to introduce novel metrics, which quantify
such process.

In the spatial exploration task an agent traverses a square open
arena. Traversing the environment, the actions taken determine a
trajectory in three spaces: the latent space, which defines the
agent’s (or animal’s) state in the environment, the observation
space of the agent’s sensory experience, and the neural activation
space of its neural representation. We introduce the task defining
these three spaces.

The latent space, similarly to the card-game example, is the
set of spatial coordinates that identifies the agent’s state, (x, y, θ),

Fig. 1 Predictive network solving a card-game task. a Description of the latent space underlying the task. b Illustration of the task and information flow
diagram: the neural representation receives state observations and actions and extracts the latent space structure by means of predicting upcoming
observations. c Diagram of the network’s structure. The diagram highlights the layer studied here, although the network has a two layers, where the second
layer serves as a decoder. d The network’s neural representation: activity in the hidden layer plotted vs. principal components PCs 1 and 2 of hidden layer
activity. For each observation-action pair (ot, at), the corresponding activation is colored by the position of the state that the network predicts: x-coordinate
(left plot, before and after learning) and y-coordinate (right plot). e Same as panel d in the absence of the action as a input to the network. f Same as panel
d for a three-dimensional latent space.
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where x and y are position and θ is its direction. The
observation space is defined in terms of the agent’s ability to
sense the surrounding environment. To model this we consider
the case where the agent senses both visual and distal
information from the environment’s walls—the agent is
equipped with sensors that span a 90o visual cone centered on
its current direction θ reporting distance and color of the
environment’s wall along their directions, Fig. 2b. The
environment the agent navigates is a discrete grid of 64 × 64
locations. Each wall tile, one at each wall location, is first
colored randomly and then a narrow spatial autocorrelation is
applied, see Fig. 2b. The number of sensors Ns is chosen so that
observations across sensors are independent Ns= 5.

We consider the case where the agent’s actions are correlated in
time but do not depend on the observations—random explora-
tion. At each step the agent’s direction θ is updated by a small
random angle dθ drawn from a Gaussian distribution centered at
zero and with a variance of 30o. The agent then moves to the
discrete grid location most aligned with the updated direction θ
+ dθ (unless it is occupied by a wall; cfr. Methods for details).
Actions are performed by the agent with respect to its allocentric
framework, so that there are nine possible choices: for each
location there are eight neighboring ones plus the possibility of
remaining in the same location. While the agent moves in the
environment it collects a stream of observations.

In predictive learning, the agent learns to predict the upcoming
sensory observation, Fig. 2c. It achieves this by minimizing the
difference between its prediction yt at time t and the upcoming
observation ot+1: C= ∑t∣∣yt− ot+1∣∣2, Fig. 2d. We refer to the
activations of the units of the trained RNN as its internal
predictive representation. The RNN can be thought as a model of
the agent’s brain area carrying out the task. As the agent learns to
predict the next observation, its representation is influenced both
by the observation space (since the task is defined purely in terms
of observations) and by the latent space (since the actions are

defined on it); a priori, it is not obvious which space’s influence
will be stronger. In this example, we used a more general
recurrent network rather than the simplest-possible feedforward
setup in the first example of Fig. 1; this allows information from
the stream of sensory observations to be integrated over time, a
feature especially important in more challenging settings when
instantaneous sensory information may be only partially
informative of the current state.

A first indication that, by the end of learning, neurons encode
the latent space is given by the fact that individual neurons
develop spatial tuning Fig. 2e. The neural representation has
extracted information about the latent space from the observa-
tions, without any explicit prompt to do so. In the Suppl. Mat.
(Figs. S7–S12), we show how this phenomenon is robust to
alterations of the sensory observations and network architecture.

However, when the same network learns, based on the same
input sequence, to reproduce the current observation (autoencoding
framework corresponding to a cost C= ∑t∣∣yt− ot∣∣2) rather than
predict the upcoming one, individual neurons do not appear to
develop spatial tuning, Fig. 2f and Suppl. Mat. (Figs. S10–11).

Metrics for predictive learning and latent representations. How
—and to what extent—does the neural population as a whole
represent the latent space? This question demands quantitative
answers. To this end we develop novel methods for analyzing
neural representation manifolds, and three metrics that capture
the dynamical and geometrical properties of the representation
manifold. These are predictive error, latent signal transfer and
dimensionality gain. While the first of these is specific to pre-
dictive frameworks, the other two could be interpreted as general
metrics to quantify the process of extraction of a low-dimensional
latent space from data. Below we illustrate these metrics in the
context of the spatial exploration task (cf. Figs. S3–5 for a detailed
analysis and more examples of such metrics).

Fig. 2 Predictive network solving an exploration task. a Information flow diagram of the task: an agent explores a two-dimensional environment (latent
space) through actions and receives observations regarding it. The network’s task is to predict the next sensory observation. By learning to do so it
recovers information regarding the underlying hidden latent space. b Illustration of the agent with sensors in the square environment where the walls have
been colored (cfr. Methods). The sensors span a 90o degree angle and register the color and distance of the wall along their respective directions. c
Diagram of the predictive recurrent neural network: the network receives actions and observations as inputs and is trained to output the upcoming sensory
observation. d Cost during training for the network (cf. Methods). e Average activity of 100 neurons (each of the 100 neurons average activity is showed in
one of the small 100 quadrants) against the x, y coordinates of the environment, showing place-related activity. f Same as panel e for a RNN trained to
autoencode its input observations.
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Predictive error. The network’s task is to predict future obser-
vations. Owing to correlations in the sensory input itself from one
timestep to the next, to verify that the network is actually making
predictions we first ask whether the network’s output is most
similar to the upcoming observation rather than current or pre-
vious ones36. This can be captured by the absolute difference
between the current output of the network and the stream of
observations at any time, which we refer to as predictive error. If
this is skewed towards the upcoming observation (see Fig. 3a blue
line), it suggests that the network predicts elements of upcoming
observations. This measure relies on knowledge of the network’s
output and of the stream of observations. An allied measure of
this effect relies on the ability to decode past vs. future latent
states from the current neural representation. If the decoding
error is skewed for future (vs. past) latent states, this also suggests
that the network predicts future states. Figure 3b shows that this
is the case for the spatial exploration network: it codes for future
latent variables as well as current and past ones, with the axis of
symmetry for decoding the spatial coordinates x, y located close
to the future value Δt= 1 (cf. Fig. S13 for a comparison with
neural data). Similarly the axis of symmetry for the angle θ is
located closer to Δt= 1, although in this case the analysis is

confounded by the fact that actions carry partial information
regarding θ.

Latent signal transfer. We next introduce a feature of predictive
learning that tracks how the neural representation reflects the
latent space over the course of learning. This quantifies the
phenomenon visible by eye in the introductory example of
Fig. 1d. To define the latent signal transfer metric, at each stage of
learning we compute the average of the canonical correlation
(CC) coefficients between the representation projected into its
PCs, and latent space variables x, y, θ. The blue line in Fig. 3c
shows the average of the CC coefficients between the repre-
sentation in PCs 1 to 3 and the position x, y of the agent in latent
space. When the average CC coefficient is 1, all the signal
regarding x, y has been transferred onto PCs 1 to 3 in a linear
fashion. A similar interpretation holds for the other curves: in
sum, they track the formation of explicit representations of latent
variables that are accessible via linear decoding .

Figure 3c shows that, between epoch 50 and 150, most of the
information regarding the latent space moves onto the first few
PC modes of the neural representation. The same analysis can be

Fig. 3 Learning the predictive representation. a Predictive error (L2 norm) in blue between the network’s output and the observation as a function of the
lag (Delta t). In red average L2 norm between the observation at time 0 and at a lag Delta t. b Linear decoding of latent variables. RMS measure of the linear
decoding of (x, y, θ) at time Delta t from the neural representation at time 0. The dotted line highlights the axis of symmetry of the curves. c Signal transfer
analysis: Canonical Correlation Analysis between PCs of the neural representation and the latent space. The lines correspond to the average of the
canonical correlations between the highlighted variables. d Same as panel c but for the observation space. e Participation ratio of the representation during
learning. f Intrinsic dimensionality (ID) of the representation during learning. Five different intrinsic dimensionality estimators are used (cfr. Methods).
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carried out with respect to observation space variables. This is
shown in Fig. 3d, where the decreasing trend indicates that the
observation space signal flows out of the first few PC components
as learning progresses. Altogether Fig. 3c, d show that the
representation, as interpreted through PC components, encodes
more information about the latent space as opposed to the
observation space as learning progresses (blue and red lines).

Dimensionality gain. Finally, motivated by the fact that the
latent spaces of interest are lower-dimensional, we introduce
metrics that allow us to quantify the extent to which the learned
neural representations have a similar dimension.

We begin by noting that the latent signal transfer analysis
(Fig. 3c, d) suggests that predictive learning might have formed a
low-D neural representation. However, when we measure the
dimensionality of the neural representation with a linear
dimensionality metric, the participation ratio (PR), we observe
that dimensionality actually increases over the course of learning
Fig. 3e. Instead, measuring the dimensionality of the neural
representaion with nonlinear techniques sensitive to the local
curvature of the representation manifold—yielding the intrinsic
dimensionality (ID)—shows that the dimensionality rather than
increasing at most decreases through learning.

This dichotomy can be interpreted by means of two different
demands that shape network representations. On one hand, the
representation is prompted to encode high-dimensional observa-
tions; on the other, it extracts the regularity of a low-dimensional
latent space. While the high dimensionality of the observations is
a global property, referring to the collection of many observa-
tions, the regularity of the latent space is induced on a local scale,
as neural representations relate to their possible neighbors via the
action. These demands lead the linear dimensionality PR,
measuring a global property of the representation manifold,
and the nonlinear dimensionality ID, measuring more local
properties, to have opposite trends. This interpretation is
supported by further experiments and the next example we
study, that arm-reaching movements, in which the network is
prompted to predict a lower-dimensional observation signal. To
encapsulate this phenomenon we suggest the metric of dimen-
sionality gain (DG), which is the ratio between the linear global
dimensionality and the nonlinear local dimensionality of the
representation manifold. Higher values of DG thus capture the
network’s ability to extract a low-dimensional representation of a
high-dimensional stream of observations. In the example of
Fig. 3e, f, DG ≈ 3.5 upon learning.

The role of prediction in extracting latent representations. To
show how the three metrics just described characterize predictive
learning, we compare representations learned in the same net-
works but without the demand for prediction (as in Fig. 2f). In
Fig. 4 we show how predictive error, latent signal transfer and
dimensionality properties of the network differ in these two cases.
The comparison is carried out by training 50 different networks
of smaller size (100 neurons) on either the predictive task or a
non-predictive version in which the network outputs observations
received on the current timestep. In sum, comparing each of the
metrics introduced above for the predictive vs. non-protective
cases shows that, while predictive learning extracts a low-
dimensional manifold encoding for the latent variables, non-
predictive learning in these networks does not.

One point here bears further discussion. While Fig. 4e shows
that ID is lower in the predictive vs. non-predictive case, this may
seem surprising because there are grounds to expect that ID
would be equal in these cases. These grounds are that the
observations are produced as a map from a low-dimensional

latent space in both cases, so that if the network directly encodes
them, it should admit a similar low-dimensional parametrization
and hence similar ID in both cases as well. The resolution comes
from the fact that ID, despite being a local measure, is based on
statistical properties of points sampled from a manifold (cf.
“Methods”). So if the manifold appears higher dimensional,
despite having a parametrization, which is low-dimensional, then
ID would point to a higher dimension. In other terms ID is
sensitive to the manifold’s smoothness and can be taken as a
measure of it for manifolds parameterized by a fixed number of
variables. This problem is known in the literature as multiscaling
and different ID measures are more or less robust to it31.

Finally we note that, in Suppl. Mat. Figs. S7–12, we describe a
series of 12 other control networks that show how results on the
role of prediction are robust against a number of factors such as
noise. These results show that predictive models outperform non-
predictive models in the encoding of latent variables, at least when
such encoding is probed by means of linear measures (cf. Fig. S7).

Visualizing the structure of learned neural population mani-
folds: signal transfer and neural manifold cells. The metrics just
introduced capture properties of the neural representation at the
population level via useful numbers that can be plotted over the
course of learning. Here, we pause to visualize the underlying
population representations in two complementary ways.

The first visualization is directly related to the metric of latent
space signal transfer. In Fig. 5a the neural representation
projected into the space of its first three PCs, colored according
to each of the three latent variables x, y, and θ. Each point in these
plots corresponds to the neural representation at a specific
moment in time, and the color of the point is determined by the
position or orientation of the agent in the latent environment at
that moment. This shows visually that, after learning, the agent’s
location x, y is systematically encoded in the first three PCs, while
PCs four and five encode the agent’s orientation θ, Fig. 5b. This
corresponds to the high values of latent space signal transfer seen
at the end of learning in Fig. 3c. We next turn to visualize whether
the observation variables are similarly encoded in the network
representation. Figure 5c shows that, while the first three PCs do
encode distance, they do not appear to encode the sensor-
averaged color in any of the three RGB (red, green, blue) channels.
Intriguingly, this is a consequence of learning: average color
information is encoded in the first PCs in the beginning of
learning as suggested by the signal transfer measure (cfr. Fig. 3c),
but less in the end of it. Taken together, the visualizations in
Fig. 5a, b support the conclusion from the signal transfer metrics
that the network allocates most of its internal variability to the
encoding of latent variables.

These visualizations of population level neural coding, as well
as plots of single neuron tuning as in Fig. 2e, require foreign
knowledge of the latent space variables. However, in many
settings, neither the values or nature of these variables maybe
known in advance. How can we proceed in these cases? We now
introduce a second strategy for visualizing neural activity, via an
emerging concept that we refer to as neural manifold cells33,37.

Figure 5d shows the activity of the same 100 neurons in Fig. 2e
averaged over “locations” in the space spanned by the first two
PCs of the neural population activity itself. This shows tuning of
individual neurons, but not with respect to motor, stimulus, or
environmental variables as is typically studied—but rather with
respect to population level neural activity. The approach reveals a
similarity between the well known phenomenon of place cells
tuned to a location in the environment and neural manifold cells
tuned to a “location” on the principal components of their neural
population manifold (we make this relationship made more
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explicit in the context of hippocampal data in Fig. S13). Overall,
this shows that receptive fields localized not just in the latent, but
also in the principle component, spaces can arise naturally
through predictive learning.

Predictive learning extracts latent representations of arm-
reaching movements. While the spatial exploration task studied
above is a useful proving ground, given the clear role played by
latent spatial variables, we wished to illustrate the broader scope of
the effects of predictive learning. Thus, we next apply this frame-
work to a different task, that of predicting arm-reaching move-
ments. We model arm movements as a dynamical system with
forward and inverse kinematics according to the mitrovic
model38,39. In this model, movements in the 2d sagittal plane of the
upper right limb are modeled as a function of six muscles, Fig. 6a.
The muscles control, by means of dynamical equations, two angles:
the angle in between the upperarm and the line of the shoulders,
and the angle in between the forearm and upperarm. The position
of the elbow and wrist is then a nonlinear trigonometric function of
these angles and of the lengths of the upperarm and forearm.

We cast this system into predictive learning by generating
randomly correlated binary input pulses, which signal the contrac-
tion of one of the six muscles through the forward kinematics
equations, resulting in exploratory movements of the arm.

We train the predictive recurrent network to predict future
(x,y) locations of both the elbow and the wrist given their current
locations and the input to the six muscles. This replicates the

spatial exploration task description in terms of observations and
actions, where observations are in this case thought to be the
current locations of the elbow and wrist with respect to the
shoulder Fig. 6b and actions are muscular contraction signals.

Upon learning, the network successfully predicts future
observations and extracts in its neural representation the values
of the underlying latent variables that ultimately regulate the
movements: the two angles, see Fig. 6c, e. Owing to the low
dimensionality of the observations compared with the spatial
exploration task, and the fact that they are partially colinear with
the latent variables, latent space signal transfer increases over the
course of learning as before, but observation space signal transfer
does not decay.

For the same reason, the linear dimensionality (PR), as it
increases through learning, achieves a lower final value. The latent
variable extraction is accompanied by the localization of neural
activations on the neural population manifold and on the latent
space as shown in Fig. 6f, g replicating the results shown for the
spatial exploration task. Furthermore, we analyzed neural
recordings in the primary motor cortex40,41 during a motor task,
as an example of how our analysis of representations of arm-
reaching movements could inform future data analyses and
experiments, cf. Fig. S14.

Network mechanisms that create low-D representations
through prediction. In our introductory example of the card-
game, we gave some mathematical reasoning for how simple

Fig. 4 Comparison between predictive and non-predictive learning. We train 50 networks of 100 neurons in each of the predictive and non-predictive
conditions and equalize the learning axis between the two to highlight the trends of the different measures. a Predictive error. The position of the predictive
error symmetry axis plotted throughout learning for the predictive and non-predictive network ensembles. The symmetry axis position is the one that
minimizes a L2 norm between the predictive error curve (cf. Fig. 3a) and its reflection through the symmetry axis. b Latent signal transfer analysis. A
canonical correlation analysis is performed between the latent space and the top PCs of the neural representation at every epoch, and the average of the
two canonical correlations (for coordinates x and y) is shown. c Observation signal transfer analysis. The canonical correlation analysis, same as panel b, is
performed between the top PCs of the observations and the top PCs of the network’s representation. d Linear dimensionality (PR) throughout learning.
e Non-linear dimensionality (ID) throughout learning. f Dimensionality gain (DG) throughout learning.
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feedforward networks trained to predict their future inputs
(observations) can extract the structure of the latent space
underlying those observations. Here, we formalize this idea and
extend it to recurrent networks, as used for the more general
spatial and motor exploration settings studied above. Here, the
RNN is governed by the equations:

rt ¼ g Wrt�1 þWoot þWaat
� �

yt ¼ g Woutrt
� � ð5Þ

where W,Wo,Wa,Wout are the weight matrices and y is the output
exploited to minimize the predictive cost Cpred ¼

P
tjyt � otþ1j2.

Following the same logic as for the card-game task, we consider two
independent network updates, denoted by A and B respectively,
which lead up to the same observation ot+1, read out from identical
representations rAt ¼ rBt . Again, up to nonlinear corrections, this
gives the condition:

rAt�1 � rBt�1 ¼ W�1 WoðoAt � oBt Þ þWaðaAt � aBt Þ
� � ð6Þ

which is an analogous to Eq. (4). From here, we consider two
different scenarios.

In the first, the action term dominates. This gives an identical
case to the one already analyzed in the introductory section Eq. (4):
the action acts on the neural representation in a translationally
invariant way. As before, this results in representations correspond-
ing to different observations being translated with respect to one
another similarly to how the action translates among them in the
underlying latent space. For the spatial exploration task this
corresponds to the product of a two-dimensional lattice and a circle

(angle); for the arm-reaching task this corresponds to the product of
two angles.

In the second scenario, the observation term dominates.
Observations at the current time define a set of possible
observations at the next timestep, those related to the current
observation via one of the possible actions from the current point
in the latent space. Extending the reasoning above suggests that
representations rA and rB of latent states A and B should be
similar according to the overlap in this set of possible next-
timestep observations. This again suggests that the structure of
latent space will be inherited by representations, as it is only states
that are related by one action that can map to the same next-
timestep observation. This is indeed what we find: Fig. 1e and
Figs. S7–10 (case without actions) show how the latent space
emerges in neural representations in predictive networks even in
the absence of action inputs. However, the Supplemental Sec. S1.2
does show that these representations carry latent information in a
less regular way when actions are not provided to the networks.

Taken together, these results show that the network’s
representation is shaped by the latent space by means of learning
to predict future inputs. This connects to novel approached that
have recently led to important progress in the theory of deep
learning42–44 by applying group theory to analyze neural
networks45,46. Through this emerging perspective predictive
networks, when prompted with the current observation of the
state of a system (o) can be analyzed as if they were asked to
output the transformed observation upon applying the action of a
group element ga: o↦ ga(o). In our setup we use the generators of
the group instead of all possible group elements. As the network

Fig. 5 Features of the learned predictive representation. a 100,000 points of the neural network representation, corresponding to an equal number of
steps for the agent’s exploration, are shown projected into the space spanned by PCs 1 to 3 of the learned representation, and colored, respectively,
according to x, y latent variables (cfr. Fig. 1a for color code) and θ. b Same as panel b but for PCs 4 and 5. c Same as panel a but colored with respect to the
mean distance or color activations of the agent’s sensors. In this specific example, the first five PC components explain, respectively, 13.7%, 11.4%, 10.2%,
5.5%, 5.4% of the total neural variance. d Manifold cell activations: average activity of 100 neurons on the manifold (here displayed for the first PCs 1 and
2.). The activity of each neuron (one per quadrant) is averaged as the population activity is in a specific “location’’ on the neural manifold in the space
spanned by PCs 1 and 2.
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learns to apply group actions ga to its representation, it
transforms, through its layers, the given observation o into a
neural representation onto which the action acts as a group
element.

At this stage the network’s representation inherits the geometry
of what is called the group’s representation. For example, in the
spatial exploration example, the states in which the agent can be
found are defined by the Special Euclidean group of rotations and
translations in two dimensions SE(2). In our framework the
actions of the agent correspond to the group generators for
translations—reflecting minimal translational movements of the
agent (the angle, corresponding to the rotation degree, is not
directly provided). Thus, the action passed to the network is
formally the one relative to the translation subgroup, and it is
provided in vectorial form. As these group generators act as
vectorial translations on the neural representations, a definite
geometry is inherited by the network representation: the
translation subgroup of SE(2) is encoded as a two-dimensional
lattice47. This is a more general way to arrive at the conclusions of
the direct calculations taken above.

The analysis above shows how the structure of the latent space
shapes the structure of neural representations. This structure can
be clearly visualized in many of the plots presented above.
Moreover, it is reflected in the metrics we introduce in at least two
ways. First, we expect that states being represented in a
transitionally invariant way will lead to the ability to decode

states from neural representations; how this plays out for the
principal components of neural activity that are used for plotting
neural activity above and for the metric of latent space signal
transfer is described using results from the linear algebra of
Toeplitz matrices in Supplemental Secs. S2.1–2.3. Second, states
being represented in a transitionally invariant way leads to an
approximate parameterization of neural activity via terms of the
latent space, corresponding to the lower values of intrinsic
dimensionality also measured above.

By contrast, as an autoencoder does not compute the action of
a group element on its input, is not generally expected to build a
representation with structure induced by that group. Nonetheless
a group theoretic approach to autoencoders still enables insights
into why autoencoders develop activations reminiscent of
receptive fields48. In the Suppl. Mat. Sec. 2.5 we provide further
considerations on the locality of receptive fields mainly inspired
by ref. 37.

Discussion
How the brain extracts information about the latent structures of
the external world, given only its sensory observations, is a long-
standing question. Here, we show that the computation of pre-
dicting future inputs can contribute to this process, giving rise
to to low-dimensional neural representation of the underlying
latent spaces in artificial neural networks. We demonstrate this

Fig. 6 Predictive representations of arm-reaching movements. a Plane transverse to the dynamic of arm-reaching movements. The muscle model is
shown and the two latent angular variables α and β. b Recurrent network model. c Predictive error upon training. The symmetry axis is around lag +1
indicating that the network is carrying out the prediction correctly. d Latent signal transfer and observation signal transfer. e Dimensionality trends across
learning for both linear (PR) and nonlinear (ID) dimensionality measures. f Top: principal components space (PCs 1–2) colored by the average angles α, β
for each location. Bottom: average activity of neurons in the space spanned by the top 2 PCs. Each subplot represents the average activity of a single
neurons. Neurons are ranked according to their average firing rates. The most active neuron is in the top left corner, the second in the first column second
row and so on for all the neurons. g Average activity of neurons in latent space α, β. Each subplot corresponds to the neuron in panel f.
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phenomenon in a sequence of gradually more complex simula-
tions and by providing basic mathematical arguments that indi-
cate its generality.

What features of neural responses, or representations, char-
acterize predictive learning? When the observations to be pre-
dicted arise from an environment with an underlying low-
dimensional latent structure, e.g., in the case of spatial exploration
or arm-reaching movements, our work suggests several distinct
features. First, the predictive error shows that neural repre-
sentations are biased towards encoding upcoming observations or
latent variables. Second the latent structure underlying the
observations is transferred onto the representation progressively
through learning (Latent Signal Transfer, cf. Fig. 5). Finally, the
dimensionality of the set of neural responses will likely appear
high when assessed with standard linear measures, such as par-
ticipation ratio28,29. However, when assessed through nonlinear
metrics sensitive to the dimensionality of curved manifolds, the
dimensionality will be lower, in the ideal case tending to the
number of independent latent variables.

This last feature is the result of neural responses being strongly
tuned to the variables, which parameterize the neural repre-
sentation manifold (cfr. Fig. 5d). An established example of such
strong coding is the locality of neural receptive fields in latent
space (e.g., place fields). Here, we observe an allied phenomenon,
that of manifold cells with local receptive fields on the manifold of
population-wide neural responses. This is a feature that can be
explored in artificial network studies of complex data, or in
experimental settings (cf. proof-of-concept data analysis in Suppl.
Mat. Fig. S13) where the underlying latent variables do not need
to be known in advance. This feature connects to recent work on
understanding neuronal representations through the lens of
dimensionality27–29,37,49. Overall, these features provide a quan-
titative framework to compare representations across conditions
that can be applied both in machine learning (e.g., to compare
learning schemes and overall mechanisms of extracting latent
signals from data) and in brain circuits (e.g., to compare coding in
distinct brain areas).

Our findings should not be taken as a theory of a specific brain
area but rather as a formulation of a general connection between
predictive coding and the extraction of latent information from
sensory data. For example, our model falls short in explaining
mechanistically key elements of spatial maps individuated in
hippocampal recordings, such as the emergence of place cells and
their relation to direction or grid cells. However, it does suggest
that predictive learning is a mechanism that enables the binding
of sensory information beyond spatial exploration and towards
the more general notion of semantically related episodes. While
traditionally distinct theories of hippocampus involve declarative
memory50) and spatial exploration51, considerable effort has been
devoted to reconciling these apparently contrasting views52–55. In
particular, Eichenbaum54 proposed that the hippocampus sup-
ports a semantic relational network that organizes related epi-
sodes to subserve sequential planning8,9,56. Here, we posit that
prediction—with its ability to extract latent information—may
serve as such a mechanism to generate semantic relational net-
works. In particular, we speculate that relevant semantic relations
are encoded by neural representations of low intrinsic dimen-
sionality, which are constructed by predictive learning to reflect
the relevant latent variables in a task. Our results substantiate and
build on the importance of allied frameworks in constructing
such relational networks15,16,57. Overall the predictive learning
framework provides a potential alternative of generating hippo-
campal representations, which differs from both attractor58,59 and
path-integration models60,61, while maintaining elements of both
these models. Discerning the underlying differences and simila-
rities will require careful future investigations.

From an algorithmic and computational perspective, our pro-
posal is motivated by the recent success of predictive models in
machine-learning tasks that require vector representations
reflecting semantic relationships in the data. Information retrieval
and computational linguistics have benefited enormously from
the geometric properties of word embeddings learned by pre-
dictive models11–13,62. Furthermore, prediction over observations
has been used as an auxiliary task in reinforcement learning to
acquire representations favoring goal-directed learning9,16–18.
Alongside these studies there are other emerging frameworks
that are related to the predictive learning networks we analyze:
contrastive predictive coding63,64, information theoretic
approaches65,66 and world models67. Furthermore, our con-
tribution shall also be seen in light of computational models
studying neurons with optic flow selectivity68,69.

Predictive learning is a general framework that goes beyond the
examples analyzed here, and future work can expand in other
directions (text, visual processing, behavioral tasks, etc.) that may
open new theoretical advances and new implications for learning
and generalization. It will also be exciting to adapt and test these
ideas for the analysis of large-scale population recordings of
in vivo neural data—ideally longitudinally, so that the evolution
of learned neural representations can be tracked with metrics
such as the emergence of a low-D neural representation manifold,
predictive error, latent signal transfer and dimensionality gain. A
very interesting possibility is that this might uncover the presence
of latent variables in tasks where they were previously unsus-
pected or unidentified. Our techniques require no advance
knowledge of the latent variables. The consequence is that both
the number and identity of latent variables can be discovered by
analysis of a learned neural response manifold, as studied in other
settings62,70–72.

Furthermore, it will be important to develop a formal con-
nection between predictive learning mechanisms73,74 and rein-
forcement learning (RL) paradigms9,75 in both model-free and
model-based schemes76–78. This has the potential to build a
general framework that could uncover predictive learning beha-
vior in both animals and humans. One step here would be to
extend existing RL paradigms to scenarios where making pre-
dictions is important even in the absence of rewards79–82.

Methods
Card-game network. We generate a two-dimensional 5 x 5 grid of states, which is
the latent space. To each state, we randomly assign a random set of five cards from
a deck of 40, sampled with no repetition. This serves as an example of observations
associated to states, which are fully random, independent, and of arbitrary com-
plexity. In particular the dimensionality of the observation is not tied to the
dimensionality of the latent space. We generate 106 state transitions following the
five actions as defined in the main text. Upon generating such sequence of states we
train a feedforward network to predict upcoming obeservations given current ones.
The network is a two-layer network with 100 neurons in both layers, the first with
sigmoidal transfer function and the second with hyperbolic tangent followed by a
binary cross-entropy cost function. Both actions and observations have a one-hot
encoding. All weights are initialized with random normal matrices. Training is
performed on 80% of the sequence and validated on the remaining 20% utilizing a
RMSprop optimizer (parameters: learning constant= 0.0001, α= 0.95, ϵ regular-
izer= 1 ⋅ 10−7). The learning rate was reduced of a factor 0.5 if the validation loss
did not decrease for eight consecutive epochs (reducing on plateau scheme).
Training was stopped after 25 epochs with no improvement in the validation loss
(min delta of variation 5e-5). The neural network used for Fig. 2e is identical to the
one just described, except that the output is read out at the second layer (the
hyperbolic tangent layer) with mean-squared error. This is to account for the fact
that the prediction, when actions are not passed to the network, is probabilistic
towards neighboring states. All simulations were performed in Keras.

Neural network model for the spatial exploration task. We study a recurrent
neural network (RNN) that generates predictive neural representations during the
exploration of partially observable environments. RNNs are suited to processing
sequence-to-sequence tasks83 and the state of a recurrent network is a function of
the history of previous inputs and can thus be exploited to learn contextually
appropriate responses to a new given input84–86.
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Figure 2c illustrates the RNN model: at a given time t the RNN receives as input
an observation vector o! and a vector representation of the action a!. The internal
state r!t

of the network is updated and used to generate the network’s output
through the following set of equations:

rt ¼ g Wrt�1 þWoot þWaatð Þ
yt ¼ g Woutrtð Þ ð7Þ

The RNN is trained to predict the observation at the next timestep by minimizing
the first cost function, or alternatively to autoencode its input, via the predictive
and non-predictive cost functions, respectively:

Cpred ¼ 1
T

PT�1

t¼0
jjotþ1 � yt jj2 ;

Cnon�pred ¼ 1
T

PT�1

t¼0
jjot � yt jj2 :

ð8Þ

Networks were trained by minimizing the cost function in Eq. (8) via
backpropagation through time87. While RNNs are known to be difficult to train in
many cases88, a simple vanilla RNN model with hyperbolic tangent activation
function was able to learn our task, Fig. 2d.

The connectivity matrix of the recurrent network was initialized to the
identity89,90, while input and output connectivity matrices were initialized to be
random matrices. Individual weights were sampled from a normal distribution
with mean zero and standard deviation 0.02. The network had 500 recurrent units
(with the exception noted below), while the input and output size depended on the
task as defined by the environment. Each epoch of training corresponded to T=
106 time steps.

All other training details were the same as reported for the card-game example.
For the simulations of Fig. 5, we trained 100 networks of 100 neurons: 50 networks
in the predictive case and 50 networks in the non-predictive case (cf. Eq. (8) with
equal instantiation of the rest of parameters.

Description of the spatial environment. modeled the spatial exploration task in
two dimensions. We simulated the exploration of the agent in a square maze
tessellated by a grid of evenly spaced cells (64 × 64= 4096 locations). At every time t
the agent was in a given location in the maze and headed in a direction φ ∈ [0, 2π).
The agent executed a random walk in the maze, which was simulated as follows. At
every step in the simulation an action was selected by updating the direction
variable θ stochastically with dθ (i.i.d. sampled from a Gaussian distribution with
variance σ2theta ¼ 0:5 rad ). The agent then attempted a move to the cell, among the
eight adjacent ones, that was best aligned to θ. The move occurred unless the target
cell was occupied by a wall, in which case the agent remained in the current position
but updated its angle with an increment twice the size of a regular one:
σ2theta ¼ 1:0 rad . To ensure coherence between updates in the direction θ and the
cell towards which the agent just moved, we required each update in dθ to be
towards the direction of the agent’s last movement da so that dθ ⋅ (θ− da) would
always be positive, where da assumed one of 8 values depending on the action taken
by the agent.

The chosen action was encoded in a one-hot vector that indexed the movement.
The actions were discrete choices at∈[0. . 8] correlating with the head direction but
distinct from it. This was indeed a continuous variable θt ∈ [0, 2π). Moreover,
knowledge of the action didn’t provide direct information about the agent’s
direction and observation; in other words, there was no direct correspondance
between the action taken and the observation collected as for each location and
action there were many possible directions the agent could point towards and
consequently as many possible observations.

As the agent explored the environment it collected, through a set of Ns=
5 sensors, observations of the distance and color of the walls along five different
directions equally spaced in a 90 degree visual cone centered at φ. Thus it recorded,
for each sensor, four variables at every timestep: the distance from the wall and the
RGB components of the color of the wall. This information was represented by a
vector ot of size 5 × 4= 20. Such a vector, together with the action represented as a
one-hot representation, was fed as input into the network and used for the training
procedure. The walls were initially colored so that each tile corresponding to a wall
carried a random color (i.e., three uniformly randomly generated numbers in the
interval [0,1]). A Gaussian filter of variance two tiles was then used, for each color
channel, to make the color representations smooth. Figure 2b shows an example of
such an environment.

Predictive error. The predictive error is a direct generalization of Eq. (8) as a
function of a time lag variable:

CpredðlagÞ ¼
1
T

XT�1

t¼0

jjotþlag � yt jj2; ð9Þ

so that it is possible to verify that the output of the network y is most similar, on
average, to the upcoming observation rather than the current observation.

Latent signal transfer. The latent signal transfer measure was obtained by per-
forming a canonical correlation analysis (CCA) between two spaces: the top 3 PC

components of the network’s representation and other variables as specified in the
text, e.g., latent variables (x,y). CCA extracts the directions of maximal correlation
between the two spaces returning a set of canonical correlations. Latent signal
transfer is then taken to be the average of these canonical correlations, which are as
many as the minimum between the ranks of the two spaces.

Nonlinear dimensionality: intrinsic dimensionality. While research on estimat-
ing intrinsic dimensionality (ID) is advancing, there is still no single decisive
algorithm to do so; rather, we adopt the recommended practice of computing and
reporting several (here, five) different estimates of ID based on distinct ideas31,32.
The set of techniques we use include: MiNDML

91, MLE92, DancoFit93, CorrDim94,
and GMST95,96. These techniques follow the selection criteria illustrated in ref. 31,
emphasizing the ability to handle high-dimensional data (in our case hundreds of
dimensions) and being robust, efficient, and reliable; we refer the reader to ref. 25

for a useful comparison. We implement these techniques using the code from the
the authors available online31,92,93, “out of the box” without modifying
hyperparameters.

A simple intuition regarding for some of the selected techniques builds on the
notion of correlation dimension, which derives from the following idea. Consider a
manifold M of dimensionality d embedded in IRN and a set of points uniformly
sampled from the manifold. For each point build a ball of radius r (denoted as Br),
then the number of points within Br (denoted as #Br) can be analyzed as a function
of r and be found to scale as #Br ~ rd at least for small r. This scaling can be
exploited to estimate d.

Description of arm-reaching movements model. To model arm-reaching
movements we used a kinematic model of the arm muscles97,98. The arm
kinematics were modeled in the transverse plane by analyzing the effect of six
muscles on the arm dynamics, cf. Fig. 6a. The activation signals for the muscles
were used as actions in our model. For each of the six muscles, we used a pulsed
binary signal where at each instant in time the pulse can be turned on or off.
These activation signals are filtered and passed to the equations of inverse
kinematics of the muscles, which regulate muscular contraction. Such muscle
dynamics drives the arm dynamics according to the Mitrovic model38,99,100. All
the details regarding the implementations of this model can be found on the
Github repository we adopted for the simulations https://github.com/
jeremiedecock/pyarm and in the code we provide. The most relevant feature of
this model for our study is the fact that the six-dimensional muscle activity
drives nonlinear dynamics in the two-dimensional latent space described by the
two angles α, β in Fig. 6a.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated through the simulations generated is made available from the
corresponding author upon reasonable request.

Code availability
All code is made available from the corresponding author upon reasonable request.
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Supplementary Material: Predictive learning as a network mechanism

for extracting low-dimensional latent space representations.
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1 Predictive learning and representations in the simple “card game”
example: Further analysis

1.1 Learning neural representations in the card game example

In Fig. S1 we show how the neural representation, projected in the Principal Component space of PCs 1-2,
develops throughout learning for the card game task. In Fig. S1a we show the learning progression for the same
data as in plot of Fig.1d in the main manuscript. In Fig. S1b we color the same plot by the previous state while
in Fig. S1c we color the plot by the action.

These plots show how the grid of states is a prospective grid. This means that the states represented in it are
not the states of input of the network but rather states of output. This means that the latent structure extracted
by the network is the latent structure of the outputs and not the inputs. These have the same latent structure
in terms of lattice ordering but the points that are in proximity are not the ones that are generated with the
same observation os as input but rather with the same observation as output. This is a critical difference in the
predictive learning representation, as we explore further below.

1.2 Analysis of the regularity of representations

In Fig.1 of the main manuscript we show that, even when the underlying network is trained without actions,
its representations still develop some regularity, but less than in the case when actions are provided. We here
quantify this regularity. To do so we analyse Euclidean distances between the representations of different points
in the network trained with and without actions. We compute this as a function of the state distance on the 2d
lattice, where nearby states are considered to be at distance 1 while further states follow the Euclidean distance
on the lattice. For example starting from a state and taking 2 move right (East) and one up (North) leads to
a second state at a distance

√
5 from the original. In Fig. S2a we show the distributions of distances between

the representations of all states at distance 2. The representation with actions displays a smaller variance and a
higher average. In Fig. S2b we show the scaling of the average norms as a function of the distance between states.
We see that the scaling in the network trained with actions appears perfectly linear. The fact that the scaling
of distances in the network trained without actions also displays a linear relationship is indicative of the fact
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Figure S1. Learning the predictive neural representation a) Principal component space of the neural
representation colored by the x-coordinate of the input latent space. b) Principal component space of the neural
representation colored by the x-coordinate of the output latent space. c) Principal component space of the neural
representation colored by the input action.

that the representation is ”partially ordered.” The quantification of this partial ordering or regularity is given in
Fig. S2c where we show the average divided by the standard deviation of the distances between states (these are
averages and standard deviations of all distance distributions as in Fig. S2a). We highlight how, in the network
with actions, the linear trend is maintained, following from the fact that while the norm increases (Fig. S2b) the
standard deviation is fairly constant. By contrast, for the network trained without actions, the standard deviation
(the “noise” in this analysis) increases so that the relative increase in the average norm (the ”signal”) is damped.
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Figure S2. Regularity analysis. a) Distribution of distances for the representation of states at a lattice distance
of 2 from one another. b) Average of the distribution of Euclidean distances of neural representations as a
function of the distances between the two corresponding states. c) Same as b) but normalized by the standard
deviation of each representation, i.e. displaying mean/std.
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2 Theoretical analysis of predictive learning and latent space repre-
sentations

2.1 Low-dimensional neural representation manifolds and how they code latent
variables

We begin by defining and characterising the dimensionality of a representation manifold in an idealized, pre-
prescribed setting. This is a simplified, concrete model of latent space coding. Low-dimensional (Low-D)
representation manifolds occur when a large number of neurons are strongly and consistently tuned to a small set
of latent variables. Place and grid cells are examples of such coding [14,20–22].

In the following, we consider the following specific setting. Given two continuous variables x, y that parametrize
a latent space, Fig. S3a, consider an ensemble of N neurons with Gaussian tuning curves that are centered over
uniformly distributed locations on the latent space. For example a neuron may be centered at location (x0, y0)

and have a gaussian radial basis tuning curve as shown in Fig. S3b, Gσ(x, y) = 1
2πσ2 exp

(
− (x−x0)

2+(y−y0)
2

2σ2

)
. The

responses of an ensemble of N neurons map the latent space manifold (Fig. S3a) to a neural response manifold
embedded in neural representation space (that is, the N -dimensional space spanned by the activity of all neurons in
the population. To visualize the response manifold, we project it onto its first three Principal Components (PCs),
Fig. S3c. As the agent traverses a trajectory xt in the 2d latent space (Fig. S3a, grayscale), the representation rt
traces out a trajectory on the response manifold (Fig. S3c, grayscale). We can view the tuning curve of a single
neuron (Fig. S3b) on the response manifold to obtain the manifold tuning curve of this neuron (Fig. S3d), as in
Fig. 5 in the main text. In the next section we will analyze in more depth the meaning and properties of manifold
tuning curves.

Latent space Neural representation space

Time

tuning curves 
representation

x
y

(x0,y0)

x
y

PC1

PC2

PC1

PC2

PC1

PC3

PC
2
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a

b

c

d

e

representation map

Figure S3. Analysis of neural representation manifolds with pre-prescribed neural tuning. a) Example of a two
dimensional environment in which the agent moves. We assign a unique color to each location of the environment.
A segment of the agent’s trajectory is represented in gray scale, with shade standing for time. b) Example tuning
of a neuron with gaussian receptive field centered on (x0, y0). c) Neural representation manifold projected onto
PCs 1 to 3, under the assumptions that neurons have gaussian receptive fields which uniformly cover the
environment and that the agent uniformly explores the environment. Displayed points are uniformly sampled
from the manifold. Each point of this representation manifold is colored according to the corresponding location
in latent space. The agent’s trajectory is represented on the manifold; the inset shows the top view (first two
PCs). d) Example of a neural response field on the manifold. The same neuron shown in b) is now shown, with
its receptive field with respect to manifold coordinates. e) Dimensionality Gain dependence on the size of the
gaussian field σ. The red line represents the DG as computed for 4096 neurons tiling the latent space. The blue
dotted line represents the theoretical analysis. In this case DG = PR/2 as the Intrisic Dimensionality ID = 2.

The two dimensions of the latent space completely parametrize the response manifold, resulting in a two-
dimensional curved surface. The fact that the representation manifold has two dimensions is revealed by a measure
known as Intrinsic Dimensionality (ID), whose formal definition relies on concepts of Riemannian geometry for
smooth manifolds [5].

While the ID of the representation manifold is two, due to its curvature, many linear components are necessary
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to cover it in the N -dimensional neural space. This linear dimensionality can be captured by a second measure of
dimensionality: the Participation Ratio (PR) of the manifold. This metric is defined over the eigenvalues λ1..N of
the covariance matrix C of the neural activity:

PR =
(TrC)2

Tr(C2)
=

(
∑N
i=1 λi)

2∑N
i=1 λ

2
i

=
1∑N
i=1 λ̃

2
i

(1)

where λ̃i = λi/
∑N
j=1 λj , see Fig. S4a. [1, 7, 10,13].

The two most important aspects of these measures of dimension are:

• ID of the representation manifold is determined by the latent variables underlying the inputs. As such, it
does not depend on specific details of the neural code.

• PR, by contrast, is a property of the neural code. The more localized the neural fields are (i.e. the smaller
the response curve width σ is), the more decorrelated the neural activations are, and, in turn, the higher
the linear dimensionality PR is.

Thus, the difference between PR and ID carries information about the non-linear embedding of latent variables
in the representation. We suggest a novel metric, Dimensionality Gain (DG), to capture such difference which
measures the extent to which a given representation linearly expands the “true” (i.e. intrinsic) dimensionality of
the manifold:

DG =
linear dimensionality measure

non-linear dimensionality measure
=

PR

ID
. (2)

Fig. S3e shows a key observation, that we will return to in the context of predictive representations: that the
Dimensionality Gain (DG) increases as the width σ of the neural fields decreases. Thus a higher DG is regarded
as a signature of low-D coding. We now give an analytical formula for this relationship as well as a more thorough
explanation of relationships among ID, PR, and DG.

2.2 Linear Dimensionality analysis: Participation Ratio and Dimensionality Gain

Participation Ratio is a measure of dimensionality that is based on the distributions of eigenvalues (λ1, λ2...) of
the covariance matrix C:

PR =
(TrC)2

Tr(C2)
=

(
∑N
i=1 λi)

2∑N
i=1 λ

2
i

=
1∑N
i=1 λ̃

2
i

(3)

where λ̃i = λi/
∑N
j=1 λj . In the case of the example of Fig. S3, if we assume that all the locations of the latent

space X are visited with the same probability, then we can compute the covariance matrix of the representation
C. The entry of the covariance matrix that corresponds to two neurons, i and j, with neural fields centered
respectively in position xi ≡ (xi, yi) and xj ≡ (xj , yj) = xj + ∆x = (xi+ ∆x, yi+ ∆y) and with isotropic variance
σ2 ≡ (σ2

x, σ
2
y) = (σ2, σ2) is given by:

Cij =
1

T

∫ T

0

dt (Gσ(xi − xt)−
1

T

∫ T

0

Gσ(xi − xs)ds)(Gσ(xj − xt)−
1

T

∫ T

0

Gσ(xj − xs)ds) (4)

As each location of the latent space is visited uniformly then this time integral is equivalent to a spatial average
over the area A of the latent space X :

Cij =
1

A

∫
A

dt(Gσ(xi − xt)−
1

A
)(Gσ(xj − xt)−

1

A
) =

1

A

∫
A

dt Gσ(xi − xt)Gσ(xj − xt)−
1

A
=

=
1

4πσ2

1

A
e−

∆2

4σ2

∫
A

dt Gσ/√2((xi + xj)/2− xt)−
1

A
=

=
1

4πσ2A
e−

∆2

4σ2 − 1

A2
.

(5)

where we recall that Gσ is a Gaussian with variance σ2 normalized to 1 over the area A. Eq. 5 shows that Cij has
a banded structure; in particular it is in Toeplitz form, with entries that decay with the distance between neurons
in latent space [7].

We can now compute the terms in Eq. 3 that determine the PR. Specifically by considering the approximation
A� 4πσ2 we obtain:

(C2)ij =

N∑
k=1

CikCjk ≈
∫
A

Gσ(i− k)Gσ(k − j)dk =

=
1

8π2σ2A
e−

∆2
ij

8σ2 .

(6)
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Thus the PR in the limit of large N is:

PR =
(TrC)2

Tr(C2)
=

(
N

4πσ2A

)2
8π2σ2A

N
=

NA

2πσ2
. (7)

This shows that the PR dimensionality grows with the inverse of the width of the Gaussian kernel and is
proportional to the number of neurons N. Furthermore we also see that it scales as A

sπσ2 which is the area divided
by the width of the field which matches the intuition of the problem.

If all the principal components of neural representations are independent and have equal variance, all the
eigenvalues of the covariance matrix have the same value and PR(C) = N . Alternatively, if the components are
correlated so that the variance is evenly spread across M dimensions, then λ1 = λ2 = λ3 = ...λM with λM > 0 and
λm = 0 for m > M so that the data points are arranged in an M-dimensional subspace of the full N-dimensional
space. In this case only M eigenvalues would be nonzero and PR(C) = M (Fig. S4a). For other cases, this
measure interpolates between these two regimes. As a rule of thumb, [7] establishes that the PR dimensionality
can be thought as the number of dimensions required to explain about 80% of the total population variance in
many applications.

Figure S4. Linear dimensionality analysis. a) Illustration of the Participation Ratio (PR) dimensionality
measure. The mathematical expression in terms of the eigenvalues of the covariance is illustrated for a few
distributions in PC space. The left part shows an example of point cloud distribution and the leading eigenvalues
λ1,2,3. The right part shows a symmetric spherical distribution with PR=3 and an elongated one with PR=1.1.
The eigenvalues of the covariance matrix are shown next to each example. b) PR estimation from a finite number
of neurons or trials for the manifold example of Fig. S3 with σ = 2.5. c) PR dependence on the size of the
gaussian field σ2, same as figure Fig. S3e. The red line represents the DG as computed for 4096 neurons tiling the
latent space shown in Fig.2 Main Text. The blue dotted line represents the theoretical analysis. d) Example of
the covariance matrix for σ = 2.5.

2.3 How latent space signal transfer follows from translation-invariant representa-
tions of neural states

This section explains the theory behind the results on latent space signal transfer shown in Figs. 3-6 of the main
manuscript.
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The analysis of the covariance matrix C developed above shows that it is in the Toeplitz form, due to the
evenly spaced Gaussian tuning curves (cf. Fig. S4). Specifically, in the case shown in Fig. S4d, it is a Toeplitz
tensor because, for each of the two variables, the Toeplitz structure is encoded in the representation as described
in Fig. S3. Signal transfer measures the colinearity of the projection of the neural activity on the top eigenvectors
of the covariance matrix with the latent variables. In the case analyzed above, x and y are the latent variables and
signal transfer measures whether these two variables can be expressed as a linear combination of the projections
on the top eigenvectors of the covariance matrix. To see when this is the case we need to compute the eigenvectors
of the covariance in terms of x and y. We first restrict our analysis to a nearly Toeplitz matrix in a single
variable, Fig. S5a. The eigenvectors of such a Toeplitz matrix have recently been determined to be in a form

approaching ξi = a cos
(
πki
N+1

)
for N large enough, where a is the normalization coefficient and k indicates the

kth eigenvector [3, 4], Fig. S5b. The eigenvalues are shown in Fig. S5c which displays the relative importance of
the first few eigenvectors, Fig. S5d.

The projections on the top eigenvectors are the elements of the representation that most contribute to the
value of the signal transfer measure. The top eigenvector is the constant vector n = 1√

N
(1, 1, ..1). Projecting on

this vector is equivalent to taking the average of the representation vector. In neuroscientific terms this would be
the average activity or average firing rate across all neurons. The contribution of this eigenvector is subtracted
when we consider a mean substracted covariance, the case displayed in the figure is for a Toeplitz matrix with
rows normalized to have sum one rather than zero.

The second eigenvector follows the cosine function. Suppose as above that the response of the network to the
inputs is similar to the response of a set of Gaussian-bump units responding selectively to the position latent
variable x. Projecting the activity of the network onto the second eigenvector approximately returns the position
at which the active bump is centered, but shifted by a constant and possibly negated (depending on the sign

of the eigenvector). The reason for this is that projecting onto ξ such that ξi = a cos
(

πi
N+1

)
for i ∈ [1, N ], is

similar to projecting onto ξi = − πi
N+1 + 1, since cos(x) ≈ −x + 1 in the interval [0, π]. Dropping the shift by

+1, the magnitude of the correlation coefficient between cos(x) and x in the interval [0, π] is also large, equaling
4
√
6

π2 = 0.9927, Fig. S5d (this is because cos(x) and x are strongly anti-correlated).

Thus, if we assume a Gaussian response in the activity f(x) with the form f(x) = Gσ(x− x0) around the
true location x0 in the latent space X , then the projection over the top eigenvectors of the covariance matrix in
Toeplitz form returns a value strongly correlated (in magnitude) with the position x0 of such gaussian bump that
is the latent variable encoded by it. To see this consider the convolution, similar to this projection operation,
between a gaussian and a linear variable:

1√
2πσ

∫ +∞

−∞
Gσ(x− y)x dx =

1√
2πσ

∫ +∞

−∞
e−

(x−y)2

2σ2 ((x− y) + y) dx = y . (8)

This suggests that projecting over the PCs for a low-D code will lead to recovery of the latent variables. A
condition for this to occur is that many cells are tuned to the underlying latent variables.
Now we consider the full case of the network responding to two position variables x and y. The tensoring of
multiple variables doesn’t affect the argument above as the tensored space will have, as leading eigenvectors, the
leading tensored eigenvectors of the individual spaces. The tensored covariance will be in the form:

Cxy = Cx ⊗Cy

where the Kronecker tensor product is denoted by ⊗. Thus, for the case of two variables analyzed in depth in
the previous section (Fig. S4), projecting on the first few eigenvectors still serves the role of recovering latent
variables. For a deeper analysis and understanding of these phenomena we point the interested reader to more
exhaustive reviews [3, 6, 18]. The most important caveat to this analysis is that the spectral properties of the
Toeplitz matrix described above depend on the boundary conditions. The case we considered here, where the rows
are normalized to sum to one, falls outside the common definition of Toeplitz matrix where the rows are truncated
at the boundaries. This latter choice, with different boundary conditions, would lead to eigenvectors of the form

ξi = a sin
(
πki
N+1

)
rather than ξi = a cos

(
πki
N+1

)
, where a is the normalization coefficient and k indicates the kth

eigenvector. Thus, in this case the leading eigenvectors would be sine rather than cosine functions. This difference,
however, doesn’t interfere with the argument we illustrated above, although in this case is necessary to project on
multiple eigevectors to reconstruct the latent variable. To this end a Canonical Correlation Analysis between the
latent variables and the leading iegenvectors, as we perform in the main text in defining Latent Space Signal
Transfer, comes in handy. For example, considring the canonical correlation coefficient between the underlying
variable x and the top four eigenvectors as sine functions (k ∈ {1, 2, 3, 4}) leads to a correlation coefficient of 0.86.
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Figure S5. a) Covariance matrix in Toeplitz form. The normalization of the rows (summing up to one) is such
that the boundary conditions for this matrix are not exactly in the Toeplitz. b) Sorted eigenvectors of the
Toeplitz matrix in a). c) Sorted eigenvalues. d) Top two eigenvectors of the matrix: constant and cosine shaped.
Numerical solutions are in blue and theory in red.

2.4 Participation ratio and linear dimensionality

The arguments above imply that predictive representations will have low ID (i.e., low nonlinear dimensionality).
We next give reasoning for why such predictive representations develop localized receptive fields. As shown in
Fig. S3f, this leads, in turn, to high PR (i.e., high linear dimensionality) and hence high DG, all phenomena that
we have observed in our network simulations above.

We begin with the assumption that the low-dimensional predictive representations are a smooth map of the
latent space. A consequence is Lipschitz continuity, which guarantees that nearby points in the latent space (x,x′)
map onto nearby points (r, r′) in representation space, at least up to a given radius:

dr,r′ ≤ κdx,x′ (9)

where κ is the Lipschitz constant and d indicates distance. This preservation of distances, or similarities – together
with the positivity constraint (ri ≥ 0 for each neuron i) – is known to lead to localized manifold fields [16, 19].
Interestingly, in our framework this result appears to be true for both positive representations (when the activation
function is a sigmoid) and other ones although in such cases the localization of the receptive fields appears to
be different and, in general, less localized than in the case where a sigmoid (positive) transfer function is used,
Fig. S6.

saturated relua b

Figure S6. Neural activations comparison across activation functions. a) Average neural activations for a
predictive network trained with hyperbolic tangent activation function. b) Same as panel a for a network trained
with a hard sigmoid: f(x) = 0 if x≤-2.5, f(x) = 1 if x≥2.5, f(x) = 0.2x+ 0.5 otherwise.

The arguments above indicate that predictive learning leads to increases in linear dimensionality, as observed
in our learning simulations (Fig.3 main manuscript). But when should this increase stop? A possible answer
is: when the linear dimensionality of the neural representation matches that of the outputs that the network
is seeking to produce. We give a simplified argument based on linear readout that suggests why this answer
might be correct. Rewriting the cost function for a linear readout we obtain Cpred = 1

T

∑T−1
t=0 ||ot+1 − yt||2 =
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1
T

∑T−1
t=0 ||ot+1 −W outrt||2, and recognize that (for W out randomly distributed or orthogonal), the linear

dimensionality of the representation tends to match the linear dimensionality of the output as they are directly
related through the linear transformation W out (cf. [2, 8, 12]). Our numerical studies lend evidence to this: the
PR increases through learning until it saturates at about the PR dimensionality of the output, which is 16.2,
Fig.3 main manuscript.

2.5 Further considerations on the locality of receptive fields

Consider the case where the movement of the agent in the latent space X is governed by a discrete-time dynamical
system, similar to the case in the main text:

xt+1 = F (xt) (10)

where x = (x, y, θ) and F (x) is a vector field on X . Above we argued that the recurrent network representation
rt = fRNN (ot, rt−1) through learning becomes a direct function of the latent space X as predictive learning
extracts the latent variables: rt = f(xt). We now ask the question of whether this representation has localized
neural activity.
Considering the local expansion at second order around a point x∗ ∈ X we obtain:

f(x∗)− f(x) = f(x∗) +Df (x∗) · (x− x∗) + (x− x∗) ·Hf (x∗) · (x− x∗) + ... (11)

where Df and Hf are respectively the Jacobian and Hessian. Assuming that the function f is Lipschitz continous
then:

dr∗,r = ||f(x∗)− f(x)|| ≤ κm||x− x∗|| , (12)

where κm is the Lipschitz constant. Furthermore if the inverse is Lipschitz, as expected if the representation
manifold is smooth, then we have the bi-Lipschitz property:

κldx,x∗ ≤ dr∗,r = ||f(x∗)− f(x)|| ≤ κmdx,x∗ . (13)

These bounds suggest that local similarities in latent space X translate in local similarities in representation space
R. Furthermore, depending on the order of the Taylor series which dominates the local expansion of the function
f(x), we obtain a stronger form of Lipschitz continuity – Holder continuity:

κld
αl
x,x∗

≤ dr∗,r = ||f(x∗)− f(x)|| ≤ κmdαmx,x∗ . (14)

These relationships control how representations of similar latent variables map onto similarities in the representation
space, up to a certain radius. As latent variables become more and more distant, the corresponding representations
tend to orthogonalize:

d2x,x∗ = ||x− x∗||2 = ||x||2 + ||x||2 − 2〈x,x∗〉 , (15)

which shows that as the scalar product 〈x,x∗〉 increases, the distance dx,x∗ decreases. On a spherical surface,
where the norm ||x|| of each point is equal, the scalar product is in 1-1 correspondence with the distance.
An example of a code which varies continuously locally but orthogonalizes globally is a representation with localized
gaussian fields, cf. Fig.2a-d in the main text. This phenomenon has been studied, with the extra condition of
the representation being positive (r ≥ 0) in [19] where the authors show that preserving local similarities with a
positivity constraint builds a representation whose receptive fields tile the representation manifold.
In sum, the arguments above indicate why activity on the representation manifold becomes localized in terms of
the latent variables x.

We close by emphasizing that the representations produced by the underlying neural networks will also be
local in time. For example, consider a Wiener process in the latent space. If xt+1 = xt + ξ and ξ is isotropically
i.i.d. according to a Gaussian distribution G(0, σX ) for each coordinate, then we obtain the relations:

dx(t),x(t∗) = ||x(t∗)− x(t)|| = dXσX
√
t∗ − t , (16)

where dX is the dimensionality of the latent space. Such relations lead to

κld
αl
x,x∗

= κl(d
XσX

√
t∗ − t)αl ≤ dr∗,r = ||f(x(t∗))− f(x(t))|| ≤ κmdαmx,x∗ = κm(dXσX

√
t∗ − t)αm . (17)

This equation highlights how similarities scale with time. They also scale with the dimensionality of the
representation manifold dR, so that considering the effective random dynamics induced on it, we have:

drt,rt∗ ≥ d
RσR

√
t∗ − t . (18)

Here σR denotes the average variance, per dimension, of the induced Wiener process in representation space.
As the dimensionality of the manifold dR decreases then the bounds become tighter and the similarity between
neighbouring points increases. These considerations will drive future research aimed at fully describing how
similarities explored dynamically across time lead to the learning of similarities across space on the representation
manifold.
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3 Control studies: Numerical simulations

3.1 Robustness of our findings: comparing results for multiple tasks and network
structures

Several controls are required to assess that our findings are robust to the structure of the RNN, are robust to its
input statistics, are robust to other modeling assumptions, and continue to depend on the task being predictive.
We describe here a set of controls for the spatial exploration task.

Each control model is trained for a total of 200 epochs, enough for all models to converge. Our focus is not on
optimizing performance and therefore we do not employ an Early Stopping Rule here, although we reduce the
learning rate on plateau when the validation loss doesn’t decrease for more than 10 epochs. We first describe the
overall control analysis and detail later the individual models. The key difference for the models is given in their
respective names, where we use the abbreviation ’w’ for with and ’wo’ for without. For example ’wo distance
information’ refers to the same predictive model trained without distances from the walls in its observations. The
models are sorted into three categories: predictive models, non-predictive models and predictive models with
critical modifications. These last ones include modifications to the network that differ from the architecture of the
main model presented. Some of these have minor differences from the original framework (e.g. adding a sparsity
constraint) while others are critically different, like in the case of predicting the previous step (the past instead of
the future).

We show how for these models the metrics introduced in the main manuscript - predictive error, latent signal
transfer and dimensionality analysis (DG) - capture differences across these models. In Fig. S7 we show how the
models converge in their cost function through learning, Fig. S7a. We then show the predictive error symmetry,
Fig. S7b based on the position of the axis of symmetry for the predictive error. For a network trained to predict
the next step, this should be roughly 1 while for a network trained to predict the previous step, this should
be roughly -1. In Fig. S7c we show the linear regression coefficient for a linear regression between the hidden
representations of these networks and the spatial variables x, y. The linear decoding of position is the average of
the two regressors for coordinate x and y. Models linearly encode for position in their hidden representation have
a linear decoding measure closer to one. The results of these controls are in line with those in Fig. 3 of the main
manuscript.

Following the same analysis presented in the main manuscript (Fir. 3) we next analyse latent signal transfer,
performing a Canonical Correlation Analysis between the position variables and the top 3 Principal Components
of the hidden representation for every epoch, Fig. S8a. The same analysis is repeated for the observation signal in
Fig. S8b. In predictive models, while the former grows through learning, the latter declines – indicating that
the top Principal Components in the hidden representation represent the position (latent signal) rather than
observations.

Finally we analyze dimensionality trends across learning for both linear and nonlinear dimensionality measures.
Fig. S9a shows the linear dimensionality (PR) across learning while Fig. S9b shows the average of nonlinear
dimensionality measures. The trends of predictive and nonpredictive models are highlighted with brackets and
generally agree with the trends pointed out in the main manuscript. It is clear that the variability across models
is high: these metrics can be affected by several different factors. For example, enforcing sparsity - which can be
achieved in several different ways - may modify the dimensionality of the representations. Finally in Fig. S9c we
show the dimensionality gain, being the ratio between linear (Fig. S9a) and nonlinear (Fig. S9b dimensionalities.

Having analyzed the metrics introduced in the main manuscript in Figs. S7 to S9 we then turn to the question
of place cell coding. As highlighted in the main manuscript the emergence of place cell activation is a possible way
to explain and interpret the trends in the metrics established this far. In Fig. S10 we show the place selectivity in
the neural activities of 100 neurons across all models. The 100 neurons are sorted to be the 100 neurons with
maximum average activity. From this figure it appears that all predictive models develop some form of localized
activations while non-predictive models do not. We also aimed at capturing the overall statistics across all cells for
their sparsity. We analyzed two forms of sparsity: temporal sparsity and spatial sparsity. For temporal sparsity
(Fig. S11a) we compute the average across time of the total activation (L1 norm of activity population vector,
given positive activity). For spatial sparsity we compute the average activations of neurons, once such activations
have been averaged over space (Fig. S11b). This is the average, for each neuron, of the values shown in Fig. S11a.
We also show in Fig. S12 four examples of how different hidden representations appear in PC space. Here the
top three Principal Components of the hidden representation are colored by the x-position of the agent in the
environment, similar to Fig. 5 in the main text.

Overall the results here displayed confirm the principal results presented in the main manuscript. They also
introduce several nuances and avenues for interesting future study. We provide the code to generate these models
and analyses.

We now explain the details of the 14 models we compared above. Each model lists only the differences from
the original one, which we refer to as “predictive learning.”
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Predictive networks

• Noise in RNN activations. In this model gaussian noise with std of 0.1 is added on top of the activations of
every unit at each step.

• Predictive learning with input noise. We add noise to the input as a control that the phenomena describe
are not dependent on the absence of noise or on overfitting. We add time independent zero mean gaussian
noise to each input channel with an amplitude σ2

noise which is 10% of the total variance of the channel:
σnoise = 0.1σchannel for all channels. The model shows the same signatures of predictive learning.

• GRU. In this model the network, instead of being a recurrent vanilla network has units which are GRU.

• LSTM. In this model the network, instead of being a recurrent vanilla network has units which are LSTM.

Non-predictive networks

• Autoencoder without bottleneck. In place of the RNN we use a feedforward layer of size 200 and we train
the model not on predicting the upcoming observations but rather on replicating them (autoencoding
framework). This model can be trained, but it doesn’t display all the phenomena highlighted in the main
text. The linear dimensionality increases and the intrinsic dimensionality decreases but the latent variables
do not seem to be extracted as in the predictive case. Both CCA metrics fail to show the extraction of
latent variables and place cell tuning curves do not appear.

• Autoencoder with bottleneck. In place of the RNN we use a feedforward layer of size 10.

• Non-predictive, recurrent autoencoder. This model, as discussed in the main text, has the same structure of
the predictive learning one but is trained in replicating (autoencoding) the input observations.

Other models

• Sparsity, predictive learning with a sparsity constraint. We add a L1 sparsity constraint with a penalty of
5 10−8 on the activations of the recurrent network. This constraint doesn’t appear to sparsify the network
in a straightfoward way. Rather it seems to strongly reduce the overall activity and introduce a code where
some units tend to be more active than others overall. This is a signature of a less distributed neural code.

• Predictive learning without actions. In this case actions are not fed as input to the network but the network
is still trained to reproduce both distance and color information. The task is more difficult but the network
still seems to be able to extract a representation with similar features to the full case, as long as it is trained
to perform predictive learning.

• Predictive learning without color information. We train the same predictive learning model without color
information from the sensors in the input and output: color information is not passed as input and is not
decoded from the output. Sensors receive only distance information. The model minimizes the cost function
but it doesn’t display the features analyzed in the main text.

• Predictive learning without distance information: same as above but without distance information. The
model seems to learn with similar characteristics, showing robustness to the lack of distance information.
This is an important feature as one may say that having precise, “hard-coded” distance information in
the sensors is not biological. In the main text we study the case of both distance and color information
to include reasonably available visual information, but the present control is important to highlight the
robustness of our results.

• Autoencoder with angle. We train a network to autoencode its observations where to the observations the
current angle of the agent is added. The model didn’t train particularly well across several repetitions we
tried; it is included as an example of model which fails to train in outputting the angle, as compared to
other autoencoding models listed above.

• Predictive learning on the previous timestep. We train the same model but to predict the previous time
step in time rather than the future one. This model doesn’t extract the latent space.

4 Pilot analysis of neural data

Here we run two preliminary data analysis on both hippocampal and motor cortical neural activity to directly
link our findings to the analysis of neurophysiology data.
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Figure S7. Cost and Predictive Error metrics. a) Cost convergence across all models. b) Predictive error
symmetry axis position upon learning across all models. This is the same measure used for Fig. 4 main
manuscript. c) Linear Decoding performance of the latent variables, from the network representation.
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Figure S11. Sparsity analysis. a) Temporal sparsity. Average L1 norm of the population vector across time.
For each time step the L1 norm of the activity of all neurons is computed and the mean and standard deviation
of the distribution of such sparsity measure are displayed. b) Spatial sparsity. We compute the L1 norm of the
spatial averages of individual neurons. These are the ones plotted in Fig. S10. The average and standard
deviation of the distributions of L1 norms are used for the plot across all models.

4.1 Hippocampal recordings during spatial navigation: neural data reveal partial
evidence of predictive learning.

We analyze a publicly available neural dataset [15], collected in the Buszaki lab, consisting of recordings from
the hippocampal area CA1. In the analyzed session I15, rat i01 performed free exploration of an open square
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non-predictive without distancewithout actionspredictive learninga b c d

Figure S12. Principal Component Space. a) We show the hidden representation in PCs1-2 colored by the x
coordinate of the latent space (environment). This is the same plot as in Fig. 5 of the main manuscript. b) Same
as panel a for the non-predictive model. c) Same as panel a for the predictive model without actions. d) Same as
panel a for the predictive model without distance information.

environment for about 60min. Over 102 channels 164 CA1 neurons were recorded and identified. We didn’t
preprocess the data except for binning spikes into a moving window of 100ms (we repeated the procedure for a
moving window of 50ms and obtained similar results).

First, we decoded the future and past position and head direction of the animal from the neural population at
the current time, as a function of the time difference Delta t. Fig. S13a shows that the decoding of the spatial
coordinates, but not the angle, appeared to be prospective in time by about 100ms. This result is in line with our
findings regarding predictive error and decoding of latent variables from the representation, cf. Figs. 3a,b.

We then fit, by means of a quadratic Generalized Linear Model, receptive fields to each neuron. We repeated
the same procedure both in the spatial domain of the environmental coordinates and in the Principal Component
space spanned by the first two PCs. We measured the size of the field by the negative exponent of the fit constant
(exponential decay of the field). A higher exponent indicates a faster decay and thus a sparser code, Fig. S13b.
Neural receptive fields fit to spatial (blue) and PCs coordinates (red) have a generally similar form. This result is
in line with our analysis developed in the main manuscript Fig. 4. There we showed how, in our simulations,
single neurons developed localized receptive fields on the neural population (PC) manifold.

Finally, we tested different measures of intrinsic dimensionality on the neural data, in Fig. S13c. We reported
only measures which displayed numerical stability. Interestingly, several measures which appeared very stable
in simulations seemed unstable on neural data. This could be due to the lack of data (e.g. the green curve in
Fig. S13c appears numerically stable when at least 40 neurons are used for the computation), or to the intrinsic
noise of neural data (which was not modeled in our simulations). This suggests that careful future analyses are
needed to understand the problem of estimating the dimensionality of neural data, a topic which recent work
suggests could be of crucial importance to understand hippocampal coding [11].

We close by pointing out that the metrics we developed (latent signal transfer and dimensionality analysis)
are mainly geared towards understanding learning and the formation of manifold structures through the learning
process (Fig. 3 main manuscript). We thus look forward to future analysis of datasets with more neurons and to
attendant tests of how our methods may reveal how the geometrical properties of neural representations evolve
through task learning.

4.2 Motor Cortex recordings during virtual target reaching task.

We analyze a publicly available neural dataset [9,17], collected in the Miller lab, consisting of recordings from
the Primary Motor Cortex (M1). In the analyzed session (session n.1), a monkey controlled an on-screen cursor
being rewarded for moving it to an indicated reach target. Multiple targets were presented during each trial. The
kinematic demands of the task were minimal (e.g., very brief hold times), so that the monkey typically completed
the task with a smooth sequence of reaches. The position, velocity, and acceleration of the cursor were recorded
while electrophysiological recordings were collected with Utah multielectrode arrays yielding 97 neurons in M1 for
session N.1.

Similarly to the analysis performed on hippocampal data, we binned neural activity every 100ms to obtain spike
counts vectors on which we performed a similar analysis to the one just described and performed on hippocampal
data. We first sought to identify whether behavioral variables were encoded in the neural activity, Fig. S14a. All
behavioral variables appeared to have a decoding lag, quantified by the symmetry axis of the decoding curve,
skewed towards the future in the range of 100-300ms. This can be interpreted as a signature that M1 neural
activity encodes for the upcoming movements of the cursor.
We then attempted to characterize neural receptive fields on the behavioral latent spaces (position, velocity,
accelaration) and principal component space of the neural activity. Given the differences between experimental
paradigms (cursor moving vs arm reaching movements in predictive learning simulations) we opted for showing
raw-data rather than fitted receptive fields as in Fig. S13b. In Fig. S14b we display the average neural activity
projected on the spaces of the cursor coordinates, cursor speed and top two principal components of the neural
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Figure S13. Neural data analysis of Hippocampal data. a) Linear decoding of latent variables from neural
population data. b) Comparison between localization of receptive fields in the latent space vs Principal
Components space. Top example of localization of extracted receptive fields (quadratic GLM model) on both
latent space variables (x,y) and PCs 1-2. Bottom comparison of the extracted tuning in the two cases (red for
fitted place fields and blue for fitted fields on PCs). Inset: distribution for the predictive learning model. c) Three
measures of dimensionality estimation applied to neural data.

population activity. Further analysis with more neural statistics and careful extraction of receptive field tuning is
due to understand the similarity and differences of the tuning of individual neurons over these different spaces.
Finally we characterized the dimensionality of the neural activity manifold, Fig. S14c similarly to the case of the
hippocampus.

Altogether the presented analysis shows a way of characterizing neural activity in M1 which has the potential
to both enable comparative characterizations across brain areas (hippocampus and motor cortex) and with
different learning algorithms, e.g. predictive learning. Surely a wider and detailed data analysis is due to yield
such consistent characterization. These pilot analyses have the limited scope to allow building tools and intuition
for identifying similarities and differences across both neural recordings and between such recordings and learning
simulations.
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Figure S14. Neural data analysis of Motor Cortical data. a) Linear decoding of latent variables from neural
population data. b) Comparison between localization of receptive fields in the latent space vs Principal
Components space. (Left) Average activity of individual neurons on the space spanned by the cursor (x,y cursor
coordinates respectively). (Center) Same as left panel for cursor velocity along x and y axis. (Right) Average
activity of indivudal neurons in the space of population activity as spanned by the top two principal components
of the same. c) Two measures of dimensionality estimation applied to neural data.
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